Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL.

نویسندگان

  • H Carvalho
  • R Meneghini
چکیده

Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets

Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...

متن کامل

Effective enhancement of Pseudomonas stutzeri D-phenylglycine aminotransferase functional expression in Pichia pastoris by co-expressing Escherichia coli GroEL-GroES

BACKGROUND D-phenylglycine aminotransferase (D-PhgAT) of Pseudomonas stutzeri ST-201 catalyzes the reversible stereo-inverting transamination potentially useful in the application for synthesis of D-phenylglycine and D-4-hydroxyphenylglycine using L-glutamate as a low cost amino donor substrate in one single step. The enzyme is a relatively hydrophobic homodimeric intracellular protein difficul...

متن کامل

DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli.

Overexpression of CorA, the major magnesium transporter from bacterial inner membrane, in Escherichia coli resulted in the synthesis of 60mg of protein per liter of culture, most of which however was in the form of inclusion bodies. The levels of inclusion body formation were reduced by lowering the cell culture temperature. To dissect CorA inclusion body formation and the folding process invol...

متن کامل

Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.

Over last two decades many researchers have demonstrated the mechanisms of how the Escherichia coli chaperonin GroEL and GroES work in the binding and folding of different aggregation prone substrate proteins both in vivo and in vitro. However, preliminary aspects, such as influence of co-expressing GroEL and GroES on the over expression of other recombinant proteins in E. coli cells and subseq...

متن کامل

Chaperone mediated solubilization of 69-kDa recombinant maltodextrin glucosidase in Escherichia coli.

AIMS To investigate the factors affecting expression and solubilization of Escherichia coli maltodextrin glucosidase in E. coli. METHODS AND RESULTS Expression level and solubilization of the recombinant E. coli maltodextrin glucosidase was studied in E. coli at different temperatures, in presence of overexpressed GroEL, GroES and externally supplemented glycerol. Aggregation of maltodextrin ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas

دوره 41 4  شماره 

صفحات  -

تاریخ انتشار 2008